16 research outputs found

    The Disequilibrium of Nucleosomes Distribution along Chromosomes Plays a Functional and Evolutionarily Role in Regulating Gene Expression

    Get PDF
    To further understand the relationship between nucleosome-space occupancy (NO) and global transcriptional activity in mammals, we acquired a set of genome-wide nucleosome distribution and transcriptome data from the mouse cerebrum and testis based on ChIP (H3)-seq and RNA-seq, respectively. We identified a nearly consistent NO patterns among three mouse tissues—cerebrum, testis, and ESCs—and found, through clustering analysis for transcriptional activation, that the NO variations among chromosomes are closely associated with distinct expression levels between house-keeping (HK) genes and tissue-specific (TS) genes. Both TS and HK genes form clusters albeit the obvious majority. This feature implies that NO patterns, i.e. nucleosome binding and clustering, are coupled with gene clustering that may be functionally and evolutionarily conserved in regulating gene expression among different cell types

    Isotropic 3D Nuclear Morphometry of Normal, Fibrocystic and Malignant Breast Epithelial Cells Reveals New Structural Alterations

    Get PDF
    Grading schemes for breast cancer diagnosis are predominantly based on pathologists' qualitative assessment of altered nuclear structure from 2D brightfield microscopy images. However, cells are three-dimensional (3D) objects with features that are inherently 3D and thus poorly characterized in 2D. Our goal is to quantitatively characterize nuclear structure in 3D, assess its variation with malignancy, and investigate whether such variation correlates with standard nuclear grading criteria.We applied micro-optical computed tomographic imaging and automated 3D nuclear morphometry to quantify and compare morphological variations between human cell lines derived from normal, benign fibrocystic or malignant breast epithelium. To reproduce the appearance and contrast in clinical cytopathology images, we stained cells with hematoxylin and eosin and obtained 3D images of 150 individual stained cells of each cell type at sub-micron, isotropic resolution. Applying volumetric image analyses, we computed 42 3D morphological and textural descriptors of cellular and nuclear structure.We observed four distinct nuclear shape categories, the predominant being a mushroom cap shape. Cell and nuclear volumes increased from normal to fibrocystic to metastatic type, but there was little difference in the volume ratio of nucleus to cytoplasm (N/C ratio) between the lines. Abnormal cell nuclei had more nucleoli, markedly higher density and clumpier chromatin organization compared to normal. Nuclei of non-tumorigenic, fibrocystic cells exhibited larger textural variations than metastatic cell nuclei. At p<0.0025 by ANOVA and Kruskal-Wallis tests, 90% of our computed descriptors statistically differentiated control from abnormal cell populations, but only 69% of these features statistically differentiated the fibrocystic from the metastatic cell populations.Our results provide a new perspective on nuclear structure variations associated with malignancy and point to the value of automated quantitative 3D nuclear morphometry as an objective tool to enable development of sensitive and specific nuclear grade classification in breast cancer diagnosis

    Nuclear organisation of sperm remains remarkably unaffected in the presence of defective spermatogenesis

    Get PDF
    Organisation of chromosome territories in interphase nuclei has been studied in many systems and positional alterations have been associated with disease phenotypes (e.g. laminopathies, cancer) in somatic cells. Altered nuclear organisation is also reported in developmental processes such as mammalian spermatogenesis where a "chromocentre" model is proposed with the centromeres and sex chromosomes repositioning to the nuclear centre. The purpose of this study was to test the hypothesis that alterations in nuclear organisation of human spermatozoa are associated with defects upstream in spermatogenesis (as manifest in certain infertility phenotypes). The nuclear address of (peri-) centromeric loci for 18 chromosomes (1-4, 6-12, 15-18, 20, X and Y) was assayed in 20 males using established algorithms for 3D extrapolations of 2D data. The control group comprised 10 fertile sperm donors while the test group was 10 patients with severely compromised semen parameters including high sperm aneuploidy. All loci examined in the control group adopted defined, interior positions thus providing supporting evidence for the presence of a chromocentre and interior sex chromosome territories. In the test group however there were subtle alterations in the nuclear address for certain centromeres in individual patients and, when all patient results were pooled, some different nuclear addresses were observed for chromosomes 3, 6, 12 and 18. Considering the extensive impairment of spermatogenesis in the test group (evidenced by compromised semen parameters and increased chromosome abnormalities), the observed differences in nuclear organisation for centromeric loci compared to the controls were modest. A defined pattern of nuclear reorganisation of centromeric loci in sperm heads therefore appears to be a remarkably robust process, even if spermatogenesis is severely compromised
    corecore